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thermal cycloaddition with azides. A telescoped cycloaddition–cross-coupling protocol is reported and
its employment in the synthesis of a small triazole array is disclosed.
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Entry R Yield (a:b)

1a Me3Si; 1 5; 84% (100:0)
2 Ph; 2 6; 63% (2:3)
3 MeOCH2; 3 7; 99%b,c

4 Prn; 4 8; 99%b,c
Recent studies in our laboratories have focused on the develop-
ment of thermal- and metal-mediated cycloaddition reactions of
alkynylboronates for the synthesis of aromatic and heteroaromatic
boronic esters.1,2 A synthetically useful paradigm has emerged
whereby benzene- and azine-based boronic esters can be accessed
by cycloaddition–cycloreversion strategies,3 whilst azole-based
analogues are generated by direct cycloaddition.4,5 In the context
of this programme, we recently became interested in the synthesis
of triazole boronic esters by a direct cycloaddition route.6 The
1,2,3-triazole ring is regarded as an important pharmacophore in
drug discovery research and is common amongst a plethora of
compounds of biological significance.7 We therefore wished to
investigate the potential of the alkynylboronate cycloaddition con-
cept to deliver a range of fully substituted triazole boronic esters,
with a view to employing this chemistry in the synthesis of a small
library of heterocycles using standard array platform technologies.
We report herein the successful realisation of this idea.

Our preliminary goal was to establish the feasibility of the ther-
mally promoted azide 1,3-dipolar cycloadditions with alkynylbor-
onates.8 Indeed, we were pleased to find that heating a mixture of
benzyl azide and a small selection of boronate-substituted alkynes
provided the corresponding triazoles in high yield (Table 1). To our
surprise however, we observed significant differences in both the
reaction regioselectivity and the product stabilities. Specifically,
trimethylsilyl-substituted alkyne 1 underwent cycloaddition in
high yield to provide 5a as a single regioisomer. In contrast, phen-
ylacetylene substrate 2 furnished two regioisomers 6a, b with poor
levels of selectivity. Nonetheless, the regioisomers were separable
by chromatography and the regiochemical assignments of 6a, b
were made by HMBC NMR spectroscopy. On attempting to extend
this chemistry to alkyl-substituted alkynes 3 (R = CH2OMe) and 4
(R = Prn), we were surprised to find that the products were extre-
ll rights reserved.
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rity).
mely unstable and could not be further purified by chromatogra-
phy. However, the compounds were isolated as relatively clean
crude mixtures in high yield. Unfortunately, once again, the regi-
oselectivity was found to be rather disappointing.

These preliminary observations highlighted the potential insta-
bility of triazole boronic esters and this prompted us to explore the
potential of in situ cross-coupling methods. Moreover, we were
mindful that this particular goal complemented our ultimate aim
of employing this technique in an array format. Accordingly, we
investigated a telescoped cycloaddition–cross-coupling procedure
for the synthesis and functionalisation of the unstable boronic es-
ters 7a, b and 8a, b. As outlined in Scheme 1, we were pleased to
find that performing the cycloaddition and subsequently cross-
coupling the crude boronic ester intermediates with iodobenzene
using Fu’s protocol9 provided the corresponding triazoles 9 and
10. Moreover, these compounds were stable to chromatography
a The reaction was conducted at 110 �C.
b Yield of crude product.
c A regioselectivity of 3:2 was observed although regiochemical assignments

were not made in this case.
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and the regioisomers could be isolated as separate compounds in
good overall yield.

Having established that the cycloaddition and cross-coupling
processes could be successfully telescoped, we next demonstrated
that this chemistry could be exploited to make available a small
library of triazoles, thereby making the cycloaddition–coupling
technique of potential utility in the discovery of small bioactive
compounds. Specifically, we decided to prepare a 48-membered
library of triazoles with variable substitution at all 3 positions of
Table 2
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a Compound purities indicated in parentheses, as judged by LC–MS and NMR spectrosco
b The desired compounds were not isolated in this case.
c Yield (purity) of separated regioisomers. Regiochemical assignment was not carried ou
d Yield (purity) of inseparable regioisomeric mixtures.
the triazole ring. Accordingly, we prepared a 4�4�3 component
array consisting of azides bearing alkyl, benzyl and 2-ethanoate
groups, alkynylboronates consisting of silyl, phenyl, alkyl and
propargylic ether groups and electron neutral, rich and deficient
cross-coupling partners. The general scheme and structures of
the cycloaddition substrates are highlighted in Figure 1.

The cycloadditions were carried out in 1,2-dichlorobenzene at
150 �C in reaction tubes using a Radleys GreenHouseTM parallel syn-
thesiser. After 24 hours, each crude cycloadduct was portioned be-
tween three reaction tubes and a mixture of Pd2dba3 (5 mol %),
tBu3P�HBF4 (12 mol %), K3PO4 and aryl iodide in MeCN was added.
After stirring at 50 �C overnight, the crude reaction mixture was
purified using a Flashmaster platform on a 10 g ISOLUTE� flash
column to provide the corresponding triazole products. In the
event, the 4�4�3 array provided 30 members which had purities
P90%. Upon closer inspection, it is clear that the less effective
members of the array are largely those compounds that originate
from the cross-coupling of 4-iodoanisole. Whilst it is not the
purpose of this study to optimise the cross-coupling reaction of
this particular aryl halide, we would expect that catalyst screening
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would ultimately overcome this issue. Significantly however, there
are no such trends with respect to the azide/alkynylboronate com-
binations, suggesting that there is potential for these cycloaddi-
tions to be widely applied on the array platform.10 Moreover, the
yield would likely be generally higher if any given analogue was re-
peated as a single reaction (compare yields of 9a, b in Scheme 1
with array grid point D�a�Ph in Table 1 and 10a, b with grid point
C�a �Ph) (Table 2).

In summary, we have reported a direct route to novel triazole
boronic esters by the thermal cycloaddition of alkynylboronates
and azides. Alkynes bearing a range of alkyl/aryl groups undergo
cycloaddition in good yield but with poor regiocontrol. In sharp
contrast, the trimethylsilyl-substituted alkynes react with a range
of azides to provide the corresponding triazoles in high yield and
with excellent regiocontrol. Furthermore, the power of this chem-
istry to prepare libraries of triazoles using standard protocols for
the assembly of small molecule arrays has been exemplified.
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